Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > RANK METHOD:
Reports tagged with Rank method:
TR17-002 | 6th January 2017
Frantisek Duris

Some notes on two lower bound methods for communication complexity

We compare two methods for proving lower bounds on standard two-party model of communication complexity, the Rank method and Fooling set method. We present bounds on the number of functions $f(x,y)$, $x,y\in\{0,1\}^n$, with rank of size $k$ and fooling set of size at least k, $k\in [1,2^n]$. Using these bounds ... more >>>


TR22-137 | 26th September 2022
Daniel Avraham , Amir Yehudayoff

On blocky ranks of matrices

A matrix is blocky if it is a blowup of a permutation matrix. The blocky rank of a matrix M is the minimum number of blocky matrices that linearly span M. Hambardzumyan, Hatami and Hatami defined blocky rank and showed that it is connected to communication complexity and operator theory. ... more >>>


TR26-001 | 1st January 2026
Théo Fabris, Nutan Limaye, Srikanth Srinivasan, Amir Yehudayoff

Multilinear Algebraic Branching Programs and the Min-Partition Rank Method

It is a long-standing open problem in algebraic complexity to prove lower bounds against multilinear algebraic branching programs (mABPs). The best lower bounds in this setting are still quadratic (Alon, Kumar and Volk (Combinatorica 2020)). At the same time, it remains a possibility that the “min-partition rank” method introduced by ... more >>>




ISSN 1433-8092 | Imprint