Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > GEOMETRIC COMPLEXITY THEORY:
Reports tagged with geometric complexity theory:
TR17-009 | 19th January 2017
Joshua Grochow, Mrinal Kumar, Michael Saks, Shubhangi Saraf

Towards an algebraic natural proofs barrier via polynomial identity testing

We observe that a certain kind of algebraic proof - which covers essentially all known algebraic circuit lower bounds to date - cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is analogous to the Razborov-Rudich ... more >>>


TR18-064 | 3rd April 2018
Markus Bläser, Christian Ikenmeyer, Gorav Jindal, Vladimir Lysikov

Generalized Matrix Completion and Algebraic Natural Proofs

Algebraic natural proofs were recently introduced by Forbes, Shpilka and Volk (Proc. of the 49th Annual {ACM} {SIGACT} Symposium on Theory of Computing (STOC), pages {653--664}, 2017) and independently by Grochow, Kumar, Saks and Saraf~(CoRR, abs/1701.01717, 2017) as an attempt to transfer Razborov and Rudich's famous barrier result (J. Comput. ... more >>>


TR19-140 | 7th October 2019
Ankit Garg, Visu Makam, Rafael Mendes de Oliveira, Avi Wigderson

Search problems in algebraic complexity, GCT, and hardness of generator for invariant rings.

Revisions: 1

We consider the problem of outputting succinct encodings of lists of generators for invariant rings. Mulmuley conjectured that there are always polynomial sized such encodings for all invariant rings. We provide simple examples that disprove this conjecture (under standard complexity assumptions).

more >>>

TR20-031 | 10th March 2020
Markus Bläser, Christian Ikenmeyer, Meena Mahajan, Anurag Pandey, Nitin Saurabh

Algebraic Branching Programs, Border Complexity, and Tangent Spaces

Nisan showed in 1991 that the width of a smallest noncommutative single-(source,sink) algebraic branching program (ABP) to compute a noncommutative polynomial is given by the ranks of specific matrices. This means that the set of noncommutative polynomials with ABP width complexity at most $k$ is Zariski-closed, an important property in ... more >>>


TR20-041 | 29th March 2020
Mrinal Kumar, Ben Lee Volk

A Polynomial Degree Bound on Defining Equations of Non-rigid Matrices and Small Linear Circuits

Revisions: 1

We show that there is a defining equation of degree at most poly(n) for the (Zariski closure of the) set of the non-rigid matrices: that is, we show that for every large enough field $\mathbb{F}$, there is a non-zero $n^2$-variate polynomial $P \in \mathbb{F}(x_{1, 1}, \ldots, x_{n, n})$ of degree ... more >>>


TR20-129 | 5th September 2020
Mrinal Kumar, Ben Lee Volk

A Lower Bound on Determinantal Complexity

The determinantal complexity of a polynomial $P \in \mathbb{F}[x_1, \ldots, x_n]$ over a field $\mathbb{F}$ is the dimension of the smallest matrix $M$ whose entries are affine functions in $\mathbb{F}[x_1, \ldots, x_n]$ such that $P = Det(M)$. We prove that the determinantal complexity of the polynomial $\sum_{i = 1}^n x_i^n$ ... more >>>




ISSN 1433-8092 | Imprint