Joshua Grochow, Mrinal Kumar, Michael Saks, Shubhangi Saraf

We observe that a certain kind of algebraic proof - which covers essentially all known algebraic circuit lower bounds to date - cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is analogous to the Razborov-Rudich ... more >>>

Markus Bläser, Christian Ikenmeyer, Gorav Jindal, Vladimir Lysikov

Algebraic natural proofs were recently introduced by Forbes, Shpilka and Volk (Proc. of the 49th Annual {ACM} {SIGACT} Symposium on Theory of Computing (STOC), pages {653--664}, 2017) and independently by Grochow, Kumar, Saks and Saraf~(CoRR, abs/1701.01717, 2017) as an attempt to transfer Razborov and Rudich's famous barrier result (J. Comput. ... more >>>

Ankit Garg, Visu Makam, Rafael Mendes de Oliveira, Avi Wigderson

We consider the problem of outputting succinct encodings of lists of generators for invariant rings. Mulmuley conjectured that there are always polynomial sized such encodings for all invariant rings. We provide simple examples that disprove this conjecture (under standard complexity assumptions).

more >>>Markus Bläser, Christian Ikenmeyer, Meena Mahajan, Anurag Pandey, Nitin Saurabh

Nisan showed in 1991 that the width of a smallest noncommutative single-(source,sink) algebraic branching program (ABP) to compute a noncommutative polynomial is given by the ranks of specific matrices. This means that the set of noncommutative polynomials with ABP width complexity at most $k$ is Zariski-closed, an important property in ... more >>>

Mrinal Kumar, Ben Lee Volk

We show that there is a defining equation of degree at most poly(n) for the (Zariski closure of the) set of the non-rigid matrices: that is, we show that for every large enough field $\mathbb{F}$, there is a non-zero $n^2$-variate polynomial $P \in \mathbb{F}(x_{1, 1}, \ldots, x_{n, n})$ of degree ... more >>>

Mrinal Kumar, Ben Lee Volk

The determinantal complexity of a polynomial $P \in \mathbb{F}[x_1, \ldots, x_n]$ over a field $\mathbb{F}$ is the dimension of the smallest matrix $M$ whose entries are affine functions in $\mathbb{F}[x_1, \ldots, x_n]$ such that $P = Det(M)$. We prove that the determinantal complexity of the polynomial $\sum_{i = 1}^n x_i^n$ ... more >>>

Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, Vladimir Lysikov

In (ToCT’20) Kumar surprisingly proved that every polynomial can be approximated as a sum of a constant and a product of linear polynomials. In this work, we prove the converse of Kumar's result which ramifies in a surprising new formulation of Waring rank and border Waring rank. From this conclusion, ... more >>>