Neeraj Kayal, Vineet Nair, Chandan Saha, Sébastien Tavenas

An algebraic branching program (ABP) A can be modelled as a product expression $X_1\cdot X_2\cdot \dots \cdot X_d$, where $X_1$ and $X_d$ are $1 \times w$ and $w \times 1$ matrices respectively, and every other $X_k$ is a $w \times w$ matrix; the entries of these matrices are linear forms ... more >>>

Neeraj Kayal, Chandan Saha

A homogeneous depth three circuit $C$ computes a polynomial

$$f = T_1 + T_2 + ... + T_s ,$$ where each $T_i$ is a product of $d$ linear forms in $n$ variables over some underlying field $\mathbb{F}$. Given black-box access to $f$, can we efficiently reconstruct (i.e. proper learn) a ...
more >>>