We construct near optimal linear decision trees for a variety of decision problems in combinatorics and discrete geometry.
For example, for any constant $k$, we construct linear decision trees that solve the $k$-SUM problem on $n$ elements using $O(n \log^2 n)$ linear queries.
Moreover, the queries we use are comparison ...
more >>>
We study an extension of active learning in which the learning algorithm may ask the annotator to compare the distances of two examples from the boundary of their label-class. For example, in a recommendation system application (say for restaurants), the annotator may be asked whether she liked or disliked a ... more >>>