Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > COMMUNICATION COMPLEXITY, LIFTING THEOREM:
Reports tagged with Communication complexity, lifting theorem:
TR25-036 | 29th March 2025
Siddharth Iyer

Lifting for Arbitrary Gadgets

We prove a sensitivity-to-communication lifting theorem for arbitrary gadgets. Given functions $f: \{0,1\}^n\to \{0,1\}$ and $g : \mathcal{X} \times \mathcal{Y}\to \{0,1\}$, denote $f\circ g(x,y) := f(g(x_1,y_1),\ldots,g(x_n,y_n))$. We show that for any $f$ with sensitivity $s$ and any $g$,
\[D(f\circ g) \geq s\cdot \bigg(\frac{\Omega(D(g))}{\log rk(g)} - \log rk(g)\bigg),\]
where ... more >>>




ISSN 1433-8092 | Imprint