We consider the $(\ell_p,\ell_r)$-Grothendieck problem, which seeks to maximize the bilinear form $y^T A x$ for an input matrix $A \in {\mathbb R}^{m \times n}$ over vectors $x,y$ with $\|x\|_p=\|y\|_r=1$. The problem is equivalent to computing the $p \to r^\ast$ operator norm of $A$, where $\ell_{r^*}$ is the dual norm ... more >>>
It is well-known that randomized communication protocols are more powerful than deterministic protocols. In particular the Equality function requires $\Omega(n)$ deterministic communication complexity but has efficient randomized protocols. Previous work of Chattopadhyay, Lovett and Vinyals shows that randomized communication is strictly stronger than what can be solved by deterministic protocols ... more >>>
In an influential paper, Linial and Shraibman (STOC '07) introduced the factorization norm as a powerful tool for proving lower bounds against randomized and quantum communication complexities. They showed that the logarithm of the approximate $\gamma_2$-factorization norm is a lower bound for these parameters and asked whether a stronger ... more >>>
Several theorems and conjectures in communication complexity state or speculate that the complexity of a matrix in a given communication model is controlled by a related analytic or algebraic matrix parameter, e.g., rank, sign-rank, discrepancy, etc. The forward direction is typically easy as the structural implications of small complexity often ... more >>>