Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with Factorization norms:
TR18-097 | 15th May 2018
Vijay Bhattiprolu, Mrinalkanti Ghosh, Venkatesan Guruswami, Euiwoong Lee, Madhur Tulsiani

Approximating Operator Norms via Generalized Krivine Rounding

We consider the $(\ell_p,\ell_r)$-Grothendieck problem, which seeks to maximize the bilinear form $y^T A x$ for an input matrix $A \in {\mathbb R}^{m \times n}$ over vectors $x,y$ with $\|x\|_p=\|y\|_r=1$. The problem is equivalent to computing the $p \to r^\ast$ operator norm of $A$, where $\ell_{r^*}$ is the dual norm ... more >>>

TR22-152 | 10th November 2022
Toniann Pitassi, Morgan Shirley, Adi Shraibman

The Strength of Equality Oracles in Communication

It is well-known that randomized communication protocols are more powerful than deterministic protocols. In particular the Equality function requires $\Omega(n)$ deterministic communication complexity but has efficient randomized protocols. Previous work of Chattopadhyay, Lovett and Vinyals shows that randomized communication is strictly stronger than what can be solved by deterministic protocols ... more >>>

TR22-165 | 22nd November 2022
TsunMing Cheung, Hamed Hatami, Kaave Hosseini, Morgan Shirley

Separation of the factorization norm and randomized communication complexity

In an influential paper, Linial and Shraibman (STOC '07) introduced the factorization norm as a powerful tool for proving lower bounds against randomized and quantum communication complexities. They showed that the logarithm of the approximate $\gamma_2$-factorization norm is a lower bound for these parameters and asked whether a stronger ... more >>>

ISSN 1433-8092 | Imprint