Andrzej Lingas

We consider normalized Boolean circuits that use binary operations of disjunction and conjunction, and unary negation, with the restriction that negation can be only applied to input variables. We derive a lower bound trade-off between the size of normalized Boolean circuits computing Boolean semi-disjoint bilinear forms and their conjunction-depth (i.e., ... more >>>

Paul Beame, Niels Kornerup

We consider the time and space required for quantum computers to solve a wide variety of problems involving matrices, many of which have only been analyzed classically in prior work. Our main results show that for a range of linear algebra problems---including matrix-vector product, matrix inversion, matrix multiplication and powering---existing ... more >>>