Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with #SAT:
TR18-115 | 11th June 2018
Valentine Kabanets, Zhenjian Lu

Satisfiability and Derandomization for Small Polynomial Threshold Circuits

A polynomial threshold function (PTF) is defined as the sign of a polynomial $p\colon\bool^n\to\mathbb{R}$. A PTF circuit is a Boolean circuit whose gates are PTFs. We study the problems of exact and (promise) approximate counting for PTF circuits of constant depth.

Satisfiability (#SAT). We give the first zero-error randomized algorithm ... more >>>

TR23-184 | 22nd November 2023
Gabriel Bathie, Ryan Williams

Towards Stronger Depth Lower Bounds

A fundamental problem in circuit complexity is to find explicit functions that require large depth to compute. When considering the natural DeMorgan basis of $\{\text{OR},\text{AND}\}$, where negations incur no cost, the best known depth lower bounds for an explicit function in NP have the form $(3-o(1))\log_2 n$, established by H{\aa}stad ... more >>>

TR24-030 | 22nd February 2024
Olaf Beyersdorff, Tim Hoffmann, Luc Nicolas Spachmann

Proof Complexity of Propositional Model Counting

Recently, the proof system MICE for the model counting problem #SAT was introduced by Fichte, Hecher and Roland (SAT’22). As demonstrated by Fichte et al., the system MICE can be used for proof logging for state-of-the-art #SAT solvers.
We perform a proof-complexity study of MICE. For this we first simplify ... more >>>

ISSN 1433-8092 | Imprint