Non-signaling games are an important object of study in the theory of computation, for their role both in quantum information and in (classical) cryptography. In this work, we study the behavior of these games under parallel repetition.
We show that, unlike the situation both for classical games and for two-player ... more >>>
We show that the value of the $n$-fold repeated GHZ game is at most $2^{-\Omega(n)}$, improving upon the polynomial bound established by Holmgren and Raz. Our result is established via a reduction to approximate subgroup type questions from additive combinatorics.
more >>>We study parallel repetition of k-player games where the constraints satisfy the projection property. We prove exponential decay in the value of a parallel repetition of projection games with value less than 1.
more >>>