Igor Carboni Oliveira, Rahul Santhanam

We show that for several natural problems of interest, complexity lower bounds that are barely non-trivial imply super-polynomial or even exponential lower bounds in strong computational models. We term this phenomenon "hardness magnification". Our examples of hardness magnification include:

1. Let MCSP$[s]$ be the decision problem whose YES instances are ... more >>>

Igor Carboni Oliveira, Ján Pich, Rahul Santhanam

This work continues the development of hardness magnification. The latter proposes a strategy for showing strong complexity lower bounds by reducing them to a refined analysis of weaker models, where combinatorial techniques might be successful.

We consider gap versions of the meta-computational problems MKtP and MCSP, where one needs ... more >>>

Lijie Chen, Dylan McKay, Cody Murray, Ryan Williams

Relations and Equivalences Between Circuit Lower Bounds and Karp-Lipton Theorems

A frontier open problem in circuit complexity is to prove P^NP is not in SIZE[n^k] for all k; this is a necessary intermediate step towards NP is not in P/poly. Previously, for several classes containing P^NP, including NP^NP, ZPP^NP, and ... more >>>