Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > KRW CONJECTURE:
Reports tagged with KRW conjecture:
TR18-160 | 12th September 2018
Anna Gal, Avishay Tal, Adrian Trejo Nuñez

Cubic Formula Size Lower Bounds Based on Compositions with Majority

We define new functions based on the Andreev function and prove that they require $n^{3}/polylog(n)$ formula size to compute. The functions we consider are generalizations of the Andreev function using compositions with the majority function. Our arguments apply to composing a hard function with any function that agrees with the ... more >>>


TR19-120 | 11th September 2019
Or Meir

Toward Better Depth Lower Bounds: Two Results on the Multiplexor Relation

Revisions: 2

One of the major open problems in complexity theory is proving super-logarithmic
lower bounds on the depth of circuits (i.e., $\mathbf{P}\not\subseteq\mathbf{NC}^1$). Karchmer, Raz, and Wigderson (Computational Complexity 5, 3/4) suggested to approach this problem by proving that depth complexity behaves "as expected" with respect to the composition of functions $f ... more >>>


TR20-099 | 6th July 2020
Susanna de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere

KRW Composition Theorems via Lifting

Revisions: 1

One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., $\mathbf{P}\not\subseteq\mathbf{NC}^1$). Karchmer, Raz, and Wigderson (Computational Complexity 5(3/4), 1995) suggested to approach this problem by proving that depth complexity behaves “as expected” with respect to the composition of functions $f ... more >>>


TR20-116 | 1st August 2020
Ivan Mihajlin, Alexander Smal

Toward better depth lower bounds: the XOR-KRW conjecture

Revisions: 2

In this paper, we propose a new conjecture, the XOR-KRW conjecture, which is a relaxation of the Karchmer-Raz-Wigderson conjecture [KRW95]. This relaxation is still strong enough to imply $\mathbf{P} \not\subseteq \mathbf{NC}^1$ if proven. We also present a weaker version of this conjecture that might be used for breaking $n^3$ lower ... more >>>


TR22-016 | 15th February 2022
Artur Ignatiev, Ivan Mihajlin, Alexander Smal

Super-cubic lower bound for generalized Karchmer-Wigderson games

Revisions: 1

In this paper, we prove a super-cubic lower bound on the size of a communication protocol for generalized Karchmer-Wigderson game for some explicit function $f: \{0,1\}^n\to \{0,1\}^{\log n}$. Lower bounds for original Karchmer-Wigderson games correspond to De Morgan formula lower bounds, thus the best known size lower bound is cubic. ... more >>>


TR23-078 | 30th May 2023
Or Meir

Toward Better Depth Lower Bounds: A KRW-like theorem for Strong Composition

Revisions: 3

One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., $\mathbf{P}\not\subseteq \mathbf{NC}^{1}$). Karchmer, Raz, and Wigderson (Computational Complexity 5(3/4), 1995) suggested to approach this problem by proving that depth complexity of a composition of functions $f \diamond g$ is roughly ... more >>>


TR23-151 | 11th October 2023
Hao Wu

An Improved Composition Theorem of a Universal Relation and Most Functions via Effective Restriction

Revisions: 1

One of the major open problems in complexity theory is to demonstrate an explicit function which requires super logarithmic depth, to tackle this problem Karchmer, Raz and Wigderson proposed the KRW conjecture about composition of two functions. While this conjecture seems out of our current reach, some relaxed conjectures are ... more >>>


TR23-174 | 15th November 2023
James Cook, Ian Mertz

Tree Evaluation is in Space O(log n · log log n)

The Tree Evaluation Problem ($TreeEval$) (Cook et al. 2009) is a central candidate for separating polynomial time ($P$) from logarithmic space ($L$) via composition. While space lower bounds of $\Omega(\log^2 n)$ are known for multiple restricted models, it was recently shown by Cook and Mertz (2020) that TreeEval can be ... more >>>




ISSN 1433-8092 | Imprint