Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > MIN-ENTROPY:
Reports tagged with Min-entropy:
TR18-167 | 25th September 2018
Srinivasan Arunachalam, Sourav Chakraborty, Michal Koucky, Nitin Saurabh, Ronald de Wolf

Improved bounds on Fourier entropy and Min-entropy

Revisions: 1

Given a Boolean function $f: \{-1,1\}^n\rightarrow \{-1,1\}$, define the Fourier distribution to be the distribution on subsets of $[n]$, where each $S\subseteq [n]$ is sampled with probability $\widehat{f}(S)^2$. The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai [FK96] seeks to relate two fundamental measures associated with the Fourier distribution: does ... more >>>


TR20-054 | 22nd April 2020
Marshall Ball, Oded Goldreich, Tal Malkin

Communication Complexity with Defective Randomness

Revisions: 3

Starting with the two standard model of randomized communication complexity, we study the communication complexity of functions when the protocol has access to a defective source of randomness.
Specifically, we consider both the public-randomness and private-randomness cases, while replacing the commonly postulated perfect randomness with distributions over $\ell$ bit ... more >>>


TR21-179 | 8th December 2021
tatsuie tsukiji

Smoothed Complexity of Learning Disjunctive Normal Forms, Inverting Fourier Transforms, and Verifying Small Circuits

Comments: 1

This paper aims to derandomize the following problems in the smoothed analysis of Spielman and Teng. Learn Disjunctive Normal Form (DNF), invert Fourier Transforms (FT), and verify small circuits' unsatisfiability. Learning algorithms must predict a future observation from the only $m$ i.i.d. samples of a fixed but unknown joint-distribution $P(G(x),y)$ ... more >>>




ISSN 1433-8092 | Imprint