Under the auspices of the Computational Complexity Foundation (CCF)

REPORTS > KEYWORD > LOCAL LIST DECODING:
Reports tagged with Local List Decoding:
TR18-195 | 18th November 2018
Sofya Raskhodnikova, Noga Ron-Zewi, Nithin Varma

#### Erasures versus Errors in Local Decoding and Property Testing

Revisions: 1

We initiate the study of the role of erasures in local decoding and use our understanding to prove a separation between erasure-resilient and tolerant property testing. Local decoding in the presence of errors has been extensively studied, but has not been considered explicitly in the presence of erasures.

Motivated by ... more >>>

TR19-099 | 29th July 2019
Dean Doron, Dana Moshkovitz, Justin Oh, David Zuckerman

#### Nearly Optimal Pseudorandomness From Hardness

Revisions: 3

Existing proofs that deduce $\mathbf{BPP}=\mathbf{P}$ from circuit lower bounds convert randomized algorithms into deterministic algorithms with a large polynomial slowdown. We convert randomized algorithms into deterministic ones with little slowdown. Specifically, assuming exponential lower bounds against nondeterministic circuits, we convert any randomized algorithm over inputs of length $n$ running in ... more >>>

TR20-133 | 8th September 2020
Noga Ron-Zewi, Ronen Shaltiel, Nithin Varma

#### Query complexity lower bounds for local list-decoding and hard-core predicates (even for small rate and huge lists)

A binary code $\text{Enc}:\{0,1\}^k \rightarrow \{0,1\}^n$ is $(\frac{1}{2}-\varepsilon,L)$-list decodable if for every $w \in \{0,1\}^n$, there exists a set $\text{List}(w)$ of size at most $L$, containing all messages $m \in \{0,1\}^k$ such that the relative Hamming distance between $\text{Enc}(m)$ and $w$ is at most $\frac{1}{2}-\varepsilon$.
A $q$-query local list-decoder is ... more >>>

TR24-056 | 29th March 2024
Prashanth Amireddy, Amik Raj Behera, Manaswi Paraashar, Srikanth Srinivasan, Madhu Sudan

#### Local Correction of Linear Functions over the Boolean Cube

We consider the task of locally correcting, and locally list-correcting, multivariate linear functions over the domain $\{0,1\}^n$ over arbitrary fields and more generally Abelian groups. Such functions form error-correcting codes of relative distance $1/2$ and we give local-correction algorithms correcting up to nearly $1/4$-fraction errors making $\widetilde{\mathcal{O}}(\log n)$ queries. This ... more >>>

ISSN 1433-8092 | Imprint