Siddhesh Chaubal, Anna Gal

Nisan and Szegedy conjectured that block sensitivity is at most polynomial in sensitivity for any Boolean function. There is a huge gap between the best known upper bound on block sensitivity in terms of sensitivity - which is exponential, and the best known separating examples - which give only a ... more >>>

Sourav Chakraborty, Chandrima Kayal, Manaswi Paraashar

The role of symmetry in Boolean functions $f:\{0,1\}^n \to \{0,1\}$ has been extensively studied in complexity theory.

For example, symmetric functions, that is, functions that are invariant under the action of $S_n$ is an important class of functions in the study of Boolean functions.

A function $f:\{0,1\}^n \to \{0,1\}$ ...
more >>>