Polynomial factoring has famous practical algorithms over fields-- finite, rational \& $p$-adic. However, modulo prime powers it gets hard as there is non-unique factorization and a combinatorial blowup ensues. For example, $x^2+p \bmod p^2$ is irreducible, but $x^2+px \bmod p^2$ has exponentially many factors! We present the first randomized poly($\deg ... more >>>
Given a multivariate polynomial computed by an arithmetic branching program (ABP) of size $s$, we show that all its factors can be computed by arithmetic branching programs of size $\text{poly}(s)$. Kaltofen gave a similar result for polynomials computed by arithmetic circuits. The previously known best upper bound for ABP-factors was ... more >>>