We study the Fourier spectrum of functions $f\colon \{0,1\}^{mk} \to \{-1,0,1\}$ which can be written as a product of $k$ Boolean functions $f_i$ on disjoint $m$-bit inputs. We prove that for every positive integer $d$,
\[
\sum_{S \subseteq [mk]: |S|=d} |\hat{f_S}| = O(m)^d .
\]
Our upper bound ...
more >>>