Minimum Circuit Size Problem (MCSP) asks to decide if a given truth table of an $n$-variate boolean function has circuit complexity less than a given parameter $s$. We prove that MCSP is hard for constant-depth circuits with mod $p$ gates, for any prime $p\geq 2$ (the circuit class $AC^0[p])$. Namely, ... more >>>
The Minimum Circuit Size Problem (MCSP) asks whether a (given) Boolean function has a circuit of at most a (given) size. Despite over a half-century of study, we know relatively little about the computational complexity of MCSP. We do know that questions about the complexity of MCSP have significant ramifications ... more >>>
The Minimum Circuit Size Problem (MCSP) asks if a given truth table of a Boolean function $f$ can be computed by a Boolean circuit of size at most $\theta$, for a given parameter $\theta$. We improve several circuit lower bounds for MCSP, using pseudorandom generators (PRGs) that are local; a ... more >>>
We investigate the computational power of an arbitrary distinguisher for (not necessarily computable) hitting set generators as well as the set of Kolmogorov-random strings. This work contributes to (at least) two lines of research. One line of research is the study of the limits of black-box reductions to some distributional ... more >>>
In the Minimum Circuit Size Problem (MCSP[s(m)]), we ask if there is a circuit of size s(m) computing a given truth-table of length n = 2^m. Recently, a surprising phenomenon termed as hardness magnification by [Oliveira and Santhanam, FOCS 2018] was discovered for MCSP[s(m)] and the related problem MKtP of ... more >>>
We establish several ``sharp threshold'' results for computational complexity. For certain tasks, we can prove a resource lower bound of $n^c$ for $c \geq 1$ (or obtain an efficient circuit-analysis algorithm for $n^c$ size), there is strong intuition that a similar result can be proved for larger functions of $n$, ... more >>>
We survey recent developments related to the Minimum Circuit Size Problem
more >>>This paper focuses on a variant of the circuit minimization problem (MCSP), denoted MKTP, which studies resource-bounded Kolmogorov complexity in place of circuit size. MCSP is not known to be hard for any complexity class under any kind of m-reducibility, but recently MKTP was shown to be hard for DET ... more >>>
A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past several years, due to its close connection to circuit complexity and to the Minimum Circuit Size Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the problem of computing the KT ... more >>>
In this work, we initiate the study of the Minimum Circuit Size Problem (MCSP) in the quantum setting. MCSP is a problem to compute the circuit complexity of Boolean functions. It is a fascinating problem in complexity theory---its hardness is mysterious, and a better understanding of its hardness can have ... more >>>