Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with algebraic geometry:
TR20-029 | 6th March 2020
Swastik Kopparty, Guy Moshkovitz, Jeroen Zuiddam

Geometric Rank of Tensors and Subrank of Matrix Multiplication

Motivated by problems in algebraic complexity theory (e.g., matrix multiplication) and extremal combinatorics (e.g., the cap set problem and the sunflower problem), we introduce the geometric rank as a new tool in the study of tensors and hypergraphs. We prove that the geometric rank is an upper bound on the ... more >>>

TR22-037 | 10th March 2022
Abhibhav Garg, Rafael Mendes de Oliveira, Akash Sengupta

Robust Radical Sylvester-Gallai Theorem for Quadratics

We prove a robust generalization of a Sylvester-Gallai type theorem for quadratic polynomials, generalizing the result in [S'20].
More precisely, given a parameter $0 < \delta \leq 1$ and a finite collection $\mathcal{F}$ of irreducible and pairwise independent polynomials of degree at most 2, we say that $\mathcal{F}$ is a ... more >>>

TR22-131 | 18th September 2022
Rafael Mendes de Oliveira, Akash Sengupta

Radical Sylvester-Gallai for Cubics

Let $\mathcal{F} = \{F_1, \ldots, F_m\}$ be a finite set of irreducible homogeneous multivariate polynomials of degree at most $3$ such that $F_i$ does not divide $F_j$ for $i\neq j$.
We say that $\mathcal{F}$ is a cubic radical Sylvester-Gallai configuration if for any two distinct $F_i,F_j$ there exists a ... more >>>

ISSN 1433-8092 | Imprint