We give a quantum logspace algorithm for powering contraction matrices, that is, matrices with spectral norm at most 1. The algorithm gets as an input an arbitrary $n\times n$ contraction matrix $A$, and a parameter $T \leq poly(n)$ and outputs the entries of $A^T$, up to (arbitrary) polynomially small additive ... more >>>
In this note, we observe that quantum logspace computations are verifiable by classical logspace algorithms, with unconditional security. More precisely, every language in BQL has an information-theoretically secure) streaming proof with a quantum logspace prover and a classical logspace verifier. The prover provides a polynomial-length proof that is streamed to ... more >>>
Driven by exploring the power of quantum computation with a limited number of qubits, we present a novel complete characterization for space-bounded quantum computation, which encompasses settings with one-sided error (unitary coRQL) and two-sided error (BQL), approached from a quantum (mixed) state testing perspective:
- The first family of natural ...
more >>>