We exactly characterize the average-case complexity of the polynomial-time hierarchy (PH) by the worst-case (meta-)complexity of GapMINKT(PH), i.e., an approximation version of the problem of determining if a given string can be compressed to a short PH-oracle efficient program. Specifically, we establish the following equivalence:
DistPH is contained in ... more >>>
How difficult is it to compute the communication complexity of a two-argument total Boolean function $f:[N]\times[N]\to\{0,1\}$, when it is given as an $N\times N$ binary matrix? In 2009, Kushilevitz and Weinreb showed that this problem is cryptographically hard, but it is still open whether it is NP-hard.
In this ... more >>>
A long-standing and central open question in the theory of average-case complexity is to base average-case hardness of NP on worst-case hardness of NP. A frontier question along this line is to prove that PH is hard on average if UP requires (sub-)exponential worst-case complexity. The difficulty of resolving this ... more >>>
We show that one-way functions exist if and only if there is some samplable distribution D such that it is hard to approximate the Kolmogorov complexity of a string sampled from D. Thus we characterize the existence of one-way functions by the average-case hardness of a natural \emph{uncomputable} problem on ... more >>>
Meta-complexity studies the complexity of computational problems about complexity theory, such as the Minimum Circuit Size Problem (MCSP) and its variants. We show that a relativization barrier applies to many important open questions in meta-complexity. We give relativized worlds where:
* MCSP can be solved in deterministic polynomial time, but ... more >>>
A map $g:\{0,1\}^n\to\{0,1\}^m$ ($m>n$) is a hard proof complexity generator for a proof system $P$ iff for every string $b\in\{0,1\}^m\setminus Rng(g)$, formula $\tau_b(g)$ naturally expressing $b\not\in Rng(g)$ requires superpolynomial size $P$-proofs. One of the well-studied maps in the theory of proof complexity generators is Nisan--Wigderson generator. Razborov (Annals of Mathematics ... more >>>
Understanding the relationship between the worst-case and average-case complexities of $\mathrm{NP}$ and of other subclasses of $\mathrm{PH}$ is a long-standing problem in complexity theory. Over the last few years, much progress has been achieved in this front through the investigation of meta-complexity: the complexity of problems that refer to the ... more >>>
Diverse applications of Kolmogorov complexity to learning [CIKK16], circuit complexity [OPS19], cryptography [LP20], average-case complexity [Hir21], and proof search [Kra22] have been discovered in recent years. Since the running time of algorithms is a key resource in these fields, it is crucial in the corresponding arguments to consider time-bounded variants ... more >>>
A one-way function is a function that is easy to compute but hard to invert *on average*. We establish the first characterization of a one-way function by *worst-case* hardness assumptions, by introducing a natural meta-computational problem whose NP-hardness (and the worst-case hardness of NP) characterizes the existence of a one-way ... more >>>
If no optimal propositional proof system exists, we (and independently Pudlák) prove that ruling out length $t$ proofs of any unprovable sentence is hard. This mapping from unprovable to hard-to-prove sentences powerfully translates facts about noncomputability into complexity theory. For instance, because proving string $x$ is Kolmogorov random ($x{\in}R$) is ... more >>>
The Minimum Circuit Size Problem (MCSP) asks, given the truth table of a Boolean function $f$ and an integer $s$, if there is a circuit computing $f$ of size at most $s.$ It has been an open question since Levin's seminal work on NP-completeness whether MCSP is NP-complete. This question ... more >>>
We develop new characterizations of Impagliazzo's worlds Algorithmica, Heuristica and Pessiland by the intractability of conditional Kolmogorov complexity $\mathrm{K}$ and conditional probabilistic time-bounded Kolmogorov complexity $\mathrm{pK}^t$.
In our first set of results, we show that $\mathrm{NP} \subseteq \mathrm{BPP}$ iff $\mathrm{pK}^t(x \mid y)$ can be computed efficiently in the worst case ... more >>>
We show that assuming the Exponential Time Hypothesis, the Partial Minimum Branching Program Size Problem (MBPSP*) requires superpolynomial time. This result also applies to the partial minimization problems for many interesting subclasses of branching programs, such as read-$k$ branching programs and OBDDs.
Combining these results with our recent result (Glinskih ... more >>>
We introduce $\mathrm{pKt}$ complexity, a new notion of time-bounded Kolmogorov complexity that can be seen as a probabilistic analogue of Levin's $\mathrm{Kt}$ complexity. Using $\mathrm{pKt}$ complexity, we upgrade two recent frameworks that characterize one-way functions ($\mathrm{OWFs}$) via symmetry of information and meta-complexity, respectively. Among other contributions, we establish the following ... more >>>
The coding theorem for Kolmogorov complexity states that any string sampled from a computable distribution has a description length close to its information content. A coding theorem for resource-bounded Kolmogorov complexity is the key to obtaining fundamental results in average-case complexity, yet whether any samplable distribution admits a coding theorem ... more >>>
We prove the first meta-complexity characterization of a quantum cryptographic primitive. We show that one-way puzzles exist if and only if there is some quantum samplable distribution of binary strings over which it is hard to approximate Kolmogorov complexity. Therefore, we characterize one-way puzzles by the average-case hardness of a ... more >>>
A secret-sharing scheme allows the distribution of a secret $s$ among $n$ parties, such that only certain predefined “authorized” sets of parties can reconstruct the secret, while all other “unauthorized” sets learn nothing about $s$. The collection of authorized/unauthorized sets is defined by a monotone function $f: \{0,1\}^n \rightarrow \{0,1\}$. ... more >>>
We study connections between two fundamental questions from computer science theory. (1) Is witness encryption in the sense of Garg et al. (2013) possible for NP? That is, given an instance $x$ of an NP-complete language $L$, can one encrypt a secret message with security contingent on the ability to ... more >>>
Time-bounded conditional Kolmogorov complexity of a string $x$ given $y$, $K^t(x\mid y)$, is the length of a shortest program that, given $y$, prints $x$ within $t$ steps. The Chain Rule for conditional $K^t$ with error $e$ is the following hypothesis: there is a constant $c\in\mathbb{N}$ such that, for any strings ... more >>>
Inductive inference, introduced by Solomonoff (Information and Control, 1964), is a foundational concept in knowledge acquisition, formulated as the task of extrapolating a sequence of symbols. In his seminal work, Solomonoff established a fundamental theorem for recursion-theoretic universal inductive inference, applicable to sequences generated by all Turing machines, based on ... more >>>
In the paper where he first defined Communication Complexity, Yao asks: \emph{Is computing $CC(f)$ (the 2-way communication complexity of a given function $f$) NP-complete?} The problem of deciding whether $CC(f) \le k$, when given the communication matrix for $f$ and a number $k$, is easily seen to be in NP. ... more >>>
Meta-complexity investigates the complexity of computational problems and tasks that are themselves about computations and their complexity. Understanding whether such problems can capture the hardness of $\mathrm{NP}$ is a central research direction. A longstanding open problem in this area is to establish the $\mathrm{NP}$-hardness of $\mathrm{MINKT}$ [Ko91], the problem of ... more >>>
The classical coding theorem in Kolmogorov complexity [Lev74] states that if a string $x$ is sampled with probability $\geq \delta$ by an algorithm with prefix-free domain, then $K(x) \leq \log(1/\delta) + O(1)$. Motivated by applications in algorithms, average-case complexity, learning, and cryptography, computationally efficient variants of this result have been ... more >>>
A recent result of Ghentiyala, Li, and Stephens-Davidowitz (ECCC TR 25-210) shows that any language reducible to the Range Avoidance Problem (Avoid) via deterministic or randomized Turing reductions is contained in AM $\cap$ coAM. In this note, we present a different potential avenue for obtaining the same result via the ... more >>>
We give a meta-complexity characterization of EFI pairs, which are considered the ''minimal'' primitive in quantum cryptography (and are equivalent to quantum commitments). More precisely, we show that the existence of EFI pairs is equivalent to the following: there exists a non-uniformly samplable distribution over pure states such that the ... more >>>