We give new and efficient black-box reconstruction algorithms for some classes of depth-$3$ arithmetic circuits. As a consequence, we obtain the first efficient algorithm for computing the tensor rank and for finding the optimal tensor decomposition as a sum of rank-one tensors when then input is a {\it constant-rank} tensor. ... more >>>
We give reconstruction algorithms for subclasses of depth-$3$ arithmetic circuits. In particular, we obtain the first efficient algorithm for finding tensor rank, and an optimal tensor decomposition as a sum of rank-one tensors, when given black-box access to a tensor of super-constant rank. Specifically, we obtain the following results:
1. ... more >>>
We present a general framework for designing efficient algorithms for unsupervised learning problems, such as mixtures of Gaussians and subspace clustering. Our framework is based on a meta algorithm that learns arithmetic circuits in the presence of noise, using lower bounds. This builds upon the recent work of Garg, Kayal ... more >>>
We present a deterministic $2^{k^{\mathcal{O}(1)}} \text{poly}(n,d)$ time algorithm for decomposing $d$-dimensional, width-$n$ tensors of rank at most $k$ over $\mathbb{R}$ and $\mathbb{C}$. This improves upon the previous randomized algorithm of Peleg, Shpilka, and Volk (ITCS '24) that takes $2^{k^{k^{\mathcal{O}(k)}}} \text{poly}(n,d)$ time and the deterministic $n^{k^k}$ time algorithms of Bhargava, Saraf, ... more >>>