Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > LINEAR INDEPENDENCE:
Reports tagged with Linear independence:
TR23-032 | 24th March 2023
Vishwas Bhargava, Shubhangi Saraf, Ilya Volkovich

Linear Independence, Alternants and Applications


We develop a new technique for analyzing linear independence of multivariate polynomials. One of our main technical contributions is a \emph{Small Witness for Linear Independence} (SWLI) lemma which states the following.
If the polynomials $f_1,f_2, \ldots, f_k \in \F[X]$ over $X=\{x_1, \ldots, x_n\}$ are $\F$-linearly independent then there exists ... more >>>




ISSN 1433-8092 | Imprint