We prove that for any 3-player game $\mathcal G$, whose query distribution has the same support as the GHZ game (i.e., all $x,y,z\in \{0,1\}$ satisfying $x+y+z=0\pmod{2}$), the value of the $n$-fold parallel repetition of $\mathcal G$ decays exponentially fast: \[ \text{val}(\mathcal G^{\otimes n}) \leq \exp(-n^c)\] for all sufficiently large $n$, ... more >>>