Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR20-035 | 23rd February 2020
Justin Holmgren

No-Signaling MIPs and Faster-Than-Light Communication, Revisited

We revisit one original motivation for the study of no-signaling multi-prover
interactive proofs (NS-MIPs): specifically, that two spatially separated
provers are guaranteed to be no-signaling by the physical principle that
information cannot travel from one point to another faster than light.

We observe that with ... more >>>


TR20-034 | 12th March 2020
Erfan Khaniki

On Proof complexity of Resolution over Polynomial Calculus

Revisions: 3

The refutation system ${Res}_R({PC}_d)$ is a natural extension of resolution refutation system such that it operates with disjunctions of degree $d$ polynomials over ring $R$ with boolean variables. For $d=1$, this system is called ${Res}_R({lin})$. Based on properties of $R$, ${Res}_R({lin})$ systems can be too strong to prove lower ... more >>>


TR20-033 | 12th March 2020
Suryajith Chillara

New Exponential Size Lower Bounds against Depth Four Circuits of Bounded Individual Degree

Revisions: 2

Kayal, Saha and Tavenas [Theory of Computing, 2018] showed that for all large enough integers $n$ and $d$ such that $d\geq \omega(\log{n})$, any syntactic depth four circuit of bounded individual degree $\delta = o(d)$ that computes the Iterated Matrix Multiplication polynomial ($IMM_{n,d}$) must have size $n^{\Omega\left(\sqrt{d/\delta}\right)}$. Unfortunately, this bound ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint