Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR20-020 | 21st February 2020
Nikhil Mande, Justin Thaler, Shuchen Zhu

Improved Approximate Degree Bounds For $k$-distinctness

An open problem that is widely regarded as one of the most important in quantum query complexity is to resolve the quantum query complexity of the $k$-distinctness function on inputs of size $N$. While the case of $k=2$ (also called Element Distinctness) is well-understood, there is a polynomial gap between ... more >>>


TR20-019 | 19th February 2020
Siddharth Bhandari, Prahladh Harsha

A note on the explicit constructions of tree codes over polylogarithmic-sized alphabet

Recently, Cohen, Haeupler and Schulman gave an explicit construction of binary tree codes over polylogarithmic-sized output alphabet based on Pudl\'{a}k's construction of maximum-distance-separable (MDS) tree codes using totally-non-singular triangular matrices. In this short note, we give a unified and simpler presentation of Pudl\'{a}k and Cohen-Haeupler-Schulman's constructions.

more >>>

TR20-018 | 18th February 2020
Valentine Kabanets, Sajin Koroth, Zhenjian Lu, Dimitrios Myrisiotis, Igor Oliveira

Algorithms and Lower Bounds for de Morgan Formulas of Low-Communication Leaf Gates

The class $FORMULA[s] \circ \mathcal{G}$ consists of Boolean functions computable by size-$s$ de Morgan formulas whose leaves are any Boolean functions from a class $\mathcal{G}$. We give lower bounds and (SAT, Learning, and PRG) algorithms for $FORMULA[n^{1.99}]\circ \mathcal{G}$, for classes $\mathcal{G}$ of functions with low communication complexity. Let $R^{(k)}(\mathcal{G})$ be ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint