We show that the complexity class of exponential-time Arthur Merlin with sub-exponential advice ($AMEXP_{/2^{n^{\varepsilon}}}$) requires circuit complexity at least $2^n/n$. Previously, the best known such near-maximum lower bounds were for symmetric exponential time by Chen, Hirahara, and Ren (STOC'24) and Li (STOC'24), or randomized exponential time with MCSP oracle and ... more >>>
In a recent work, Cormode, Dall'Agnol, Gur and Hickey (CCC, 2024) introduced the model of Zero-Knowledge Streaming Interactive Proofs (zkSIPs).
Loosely speaking, such proof-systems enable a prover to convince astreaming verifier that the input $x$, to which it has read-once streaming access, satisfies some property, in such a way that ...
more >>>
We characterize the power of constant-depth Boolean circuits in generating uniform symmetric distributions. Let $f\colon\{0,1\}^m\to\{0,1\}^n$ be a Boolean function where each output bit of $f$ depends only on $O(1)$ input bits. Assume the output distribution of $f$ on uniform input bits is close to a uniform distribution $\mathcal D$ with ... more >>>