
PreviousNext
The determinant is a canonical VBP-complete polynomial in the algebraic complexity setting. In this work, we introduce two variants of the determinant polynomial which we call $StackDet_n(X)$ and $CountDet_n(X)$ and show that they are VP and VNP complete respectively under $p$-projections. The definitions of the polynomials are inspired by a ... more >>>
Random walks on expanders are a central and versatile tool in pseudorandomness. If an arbitrary half of the vertices of an expander graph are marked, known Chernoff bounds for expander walks imply that the number $M$ of marked vertices visited in a long $n$-step random walk strongly concentrates around the ... more >>>
In certain complexity-theoretic settings, it is notoriously difficult to prove complexity separations which hold almost everywhere, i.e., for all but finitely many input lengths. For example, a classical open question is whether $\mathrm{NEXP} \subset \mathrm{i.o.-}\mathrm{NP}$; that is, it is open whether nondeterministic exponential time computations can be simulated on infinitely ... more >>>
PreviousNext