Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR20-151 | 8th October 2020
Venkatesan Guruswami, Vinayak Kumar

Pseudobinomiality of the Sticky Random Walk

Random walks on expanders are a central and versatile tool in pseudorandomness. If an arbitrary half of the vertices of an expander graph are marked, known Chernoff bounds for expander walks imply that the number $M$ of marked vertices visited in a long $n$-step random walk strongly concentrates around the ... more >>>


TR20-150 | 7th October 2020
Lijie Chen, Xin Lyu, Ryan Williams

Almost-Everywhere Circuit Lower Bounds from Non-Trivial Derandomization

In certain complexity-theoretic settings, it is notoriously difficult to prove complexity separations which hold almost everywhere, i.e., for all but finitely many input lengths. For example, a classical open question is whether $\mathrm{NEXP} \subset \mathrm{i.o.-}\mathrm{NP}$; that is, it is open whether nondeterministic exponential time computations can be simulated on infinitely ... more >>>


TR20-149 | 29th September 2020
Oded Goldreich, Avi Wigderson

Robustly Self-Ordered Graphs: Constructions and Applications to Property Testing

Revisions: 2


A graph $G$ is called {\em self-ordered}\/ (a.k.a asymmetric) if the identity permutation is its only automorphism.
Equivalently, there is a unique isomorphism from $G$ to any graph that is isomorphic to $G$.
We say that $G=(V,E)$ is {\em robustly self-ordered}\/ if the size of the symmetric difference ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint