
PreviousNext
We give a quantum logspace algorithm for powering contraction matrices, that is, matrices with spectral norm at most 1. The algorithm gets as an input an arbitrary $n\times n$ contraction matrix $A$, and a parameter $T \leq poly(n)$ and outputs the entries of $A^T$, up to (arbitrary) polynomially small additive ... more >>>
Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions.
more >>>In studying the expressiveness of neural networks, an important question is whether there are functions which can only be approximated by sufficiently deep networks, assuming their size is bounded. However, for constant depths, existing results are limited to depths $2$ and $3$, and achieving results for higher depths has been ... more >>>
PreviousNext