
PreviousNext
In this paper we develop efficient randomized algorithms to solve the black-box reconstruction problem for polynomials(over finite fields) computable by depth three arithmetic circuits with alternating addition/multiplication gates, such that top(output) gate is an addition gate with in-degree $2$. Such circuits naturally compute polynomials of the form $G\times(T_1 + T_2)$, ... more >>>
We give a strong direct sum theorem for computing $XOR \circ g$. Specifically, we show that the randomized query complexity of computing the XOR of $k$ instances of $g$ satisfies $\bar{R}_\varepsilon(XOR \circ g)=\Theta(\bar{R}_{\varepsilon/k}(g))$. This matches the naive success amplification bound and answers a question of Blais and Brody.
As a ... more >>>
A Boolean function $f:\{0,1\}^n\to \{0,1\}$ is $k$-linear if it returns the sum (over the binary field $F_2$) of $k$ coordinates of the input. In this paper, we study property testing of the classes $k$-Linear, the class of all $k$-linear functions, and $k$-Linear$^*$, the class $\cup_{j=0}^kj$-Linear.
We give a non-adaptive distribution-free ...
more >>>
PreviousNext