Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR19-131 | 11th September 2019
Lieuwe Vinkhuijzen, André Deutz

A Simple Proof of Vyalyi's Theorem and some Generalizations

In quantum computational complexity theory, the class QMA models the set of problems efficiently verifiable by a quantum computer the same way that NP models this for classical computation. Vyalyi proved that if $\text{QMA}=\text{PP}$ then $\text{PH}\subseteq \text{QMA}$. In this note, we give a simple, self-contained proof of the theorem, using ... more >>>


TR19-130 | 26th September 2019
Naomi Kirshner, Alex Samorodnitsky

A moment ratio bound for polynomials and some extremal properties of Krawchouk polynomials and Hamming spheres

Let $p \ge 2$. We improve the bound $\frac{\|f\|_p}{\|f\|_2} \le (p-1)^{s/2}$ for a polynomial $f$ of degree $s$ on the boolean cube $\{0,1\}^n$, which comes from hypercontractivity, replacing the right hand side of this inequality by an explicit bivariate function of $p$ and $s$, which is smaller than $(p-1)^{s/2}$ for ... more >>>


TR19-129 | 27th September 2019
Zeev Dvir, Allen Liu

Fourier and Circulant Matrices are Not Rigid

The concept of matrix rigidity was first introduced by Valiant in [Val77]. Roughly speaking, a matrix is rigid if its rank cannot be reduced significantly by changing a small number of entries. There has been extensive interest in rigid matrices as Valiant showed that rigidity can be used to prove ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint