
PreviousNext
We study the algorithmic problem of multiplying large matrices that are rectangular. We prove that the method that has been used to construct the fastest algorithms for rectangular matrix multiplication cannot give optimal algorithms. In fact, we prove a precise numerical barrier for this method. Our barrier improves the previously ... more >>>
Motivated by problems in algebraic complexity theory (e.g., matrix multiplication) and extremal combinatorics (e.g., the cap set problem and the sunflower problem), we introduce the geometric rank as a new tool in the study of tensors and hypergraphs. We prove that the geometric rank is an upper bound on the ... more >>>
We show an $\widetilde{\Omega}(n^{2.5})$ lower bound for general depth four arithmetic circuits computing an explicit $n$-variate degree $\Theta(n)$ multilinear polynomial over any field of characteristic zero. To our knowledge, and as stated in the survey by Shpilka and Yehudayoff (FnT-TCS, 2010), no super-quadratic lower bound was known for depth four ... more >>>
PreviousNext