
PreviousNext
We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound.
In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound.
It was previously known that there are Reed-Solomon codes that do not have this ...
more >>>
In a seminal work, Nisan (Combinatorica'92) constructed a pseudorandom generator for length $n$ and width $w$ read-once branching programs with seed length $O(\log n\cdot \log(nw)+\log n\cdot\log(1/\varepsilon))$ and error $\varepsilon$. It remains a central question to reduce the seed length to $O(\log (nw/\varepsilon))$, which would prove that $\mathbf{BPL}=\mathbf{L}$. However, there has ... more >>>
We consider the query complexity of three versions of the problem of testing monomials and affine (and linear) subspaces with one-sided error, and obtain the following results:
\begin{itemize}
\item The general problem, in which the arity of the monomial (resp., co-dimension of the subspace) is not specified, has ...
more >>>
PreviousNext