Loosely speaking, the effective support size of a distribution is the size of the support of a distribution that is close to it (in totally variation distance).
We study the complexity of estimating the effective support size of an unknown distribution when given samples of the distributions as well ...
more >>>
In this note we compare two measures of the complexity of a class $\mathcal F$ of Boolean functions studied in (unconditional) pseudorandomness: $\mathcal F$'s ability to distinguish between biased and uniform coins (the coin problem), and the norms of the different levels of the Fourier expansion of functions in $\mathcal ... more >>>
In this work we consider the interplay between multiprover interactive proofs, quantum
entanglement, and zero knowledge proofs — notions that are central pillars of complexity theory,
quantum information and cryptography. In particular, we study the relationship between the
complexity class MIP$^*$ , the set of languages decidable by multiprover interactive ...
more >>>