Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR19-159 | 11th November 2019
Noah Stephens-Davidowitz, Vinod Vaikuntanathan

SETH-hardness of Coding Problems

We show that assuming the strong exponential-time hypothesis (SETH), there are no non-trivial algorithms for the nearest codeword problem (NCP), the minimum distance problem (MDP), or the nearest codeword problem with preprocessing (NCPP) on linear codes over any finite field. More precisely, we show that there are no NCP, MDP, ... more >>>


TR19-158 | 11th November 2019
Stasys Jukna, Hannes Seiwert

Sorting Can Exponentially Speed Up Pure Dynamic Programming

Many discrete minimization problems, including various versions of the shortest path problem, can be efficiently solved by dynamic programming (DP) algorithms that are ``pure'' in that they only perform basic operations, as $\min$, $\max$, $+$, but no conditional branchings via if-then-else in their recursion equations. It is known that any ... more >>>


TR19-157 | 25th September 2019
Leroy Chew, Judith Clymo

How QBF Expansion Makes Strategy Extraction Hard

In this paper we show that the QBF proof checking format QRAT (Quantified Resolution Asymmetric Tautologies) by Heule, Biere and Seidl cannot have polynomial-time strategy extraction unless P=PSPACE. In our proof, the crucial property that makes strategy extraction PSPACE-hard for this proof format is universal expansion, even expansion on a ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint