Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR19-063 | 28th April 2019
Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, Partha Mukhopadhyay

Efficient Black-Box Identity Testing for Free Group Algebra

Hrubeš and Wigderson [HW14] initiated the study of
noncommutative arithmetic circuits with division computing a
noncommutative rational function in the free skew field, and
raised the question of rational identity testing. It is now known
that the problem can be solved in deterministic polynomial time in
more >>>


TR19-062 | 18th April 2019
Scott Aaronson, Robin Kothari, William Kretschmer, Justin Thaler

Quantum Lower Bounds for Approximate Counting via Laurent Polynomials

Revisions: 2

This paper proves new limitations on the power of quantum computers to solve approximate counting---that is, multiplicatively estimating the size of a nonempty set $S\subseteq [N]$.

Given only a membership oracle for $S$, it is well known that approximate counting takes $\Theta(\sqrt{N/|S|})$ quantum queries. But what if a quantum algorithm ... more >>>


TR19-061 | 16th April 2019
Scott Aaronson, Daniel Grier, Luke Schaeffer

A Quantum Query Complexity Trichotomy for Regular Languages

We present a trichotomy theorem for the quantum query complexity of regular languages. Every regular language has quantum query complexity $\Theta(1)$, $\tilde{\Theta}(\sqrt n)$, or $\Theta(n)$. The extreme uniformity of regular languages prevents them from taking any other asymptotic complexity. This is in contrast to even the context-free languages, which we ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint