
PreviousNext
It is becoming increasingly important to understand the vulnerability of machine learning models to adversarial attacks. In this paper we study the feasibility of robust learning from the perspective of computational learning theory, considering both sample and computational complexity. In particular, our definition of robust learnability requires polynomial sample complexity. ... more >>>
We show that Gallager's ensemble of Low-Density Parity Check (LDPC) codes achieve list-decoding capacity. These are the first graph-based codes shown to have this property. Previously, the only codes known to achieve list-decoding capacity were completely random codes, random linear codes, and codes constructed by algebraic (rather than combinatorial) techniques. ... more >>>
The $\epsilon$-approximate degree of a function $f\colon X \to \{0, 1\}$ is the least degree of a multivariate real polynomial $p$ such that $|p(x)-f(x)| \leq \epsilon$ for all $x \in X$. We determine the $\epsilon$-approximate degree of the element distinctness function, the surjectivity function, and the permutation testing problem, showing ... more >>>
PreviousNext