
PreviousNext
For an interger $q\ge 2$, a perfect $q$-hash code $C$ is a block code over $\ZZ_q:=\ZZ/ q\ZZ$ of length $n$ in which every subset $\{\bc_1,\bc_2,\dots,\bc_q\}$ of $q$ elements is separated, i.e., there exists $i\in[n]$ such that $\{\proj_i(\bc_1),\proj_i(\bc_2),\dots,\proj_i(\bc_q)\}=\ZZ_q$, where $\proj_i(\bc_j)$ denotes the $i$th position of $\bc_j$. Finding the maximum size $M(n,q)$ ... more >>>
The two-way quantum/classical finite automaton (2QCFA), defined by Ambainis and Watrous, is a model of quantum computation whose quantum part is extremely limited; however, as they showed, 2QCFA are surprisingly powerful: a 2QCFA, with a single qubit, can recognize, with one-sided bounded-error, the language $L_{eq}=\{a^m b^m |m \in \mathbb{N}\}$ in ... more >>>
Over the last twenty years, an exciting interplay has emerged between proof systems and algorithms. Some natural families of algorithms can be viewed as a generic translation from a proof that a solution exists into an algorithm for finding the solution itself. This connection has perhaps been the most consequential ... more >>>
PreviousNext