
PreviousNext
In this note we compare two measures of the complexity of a class $\mathcal F$ of Boolean functions studied in (unconditional) pseudorandomness: $\mathcal F$'s ability to distinguish between biased and uniform coins (the coin problem), and the norms of the different levels of the Fourier expansion of functions in $\mathcal ... more >>>
In this work we consider the interplay between multiprover interactive proofs, quantum
entanglement, and zero knowledge proofs — notions that are central pillars of complexity theory,
quantum information and cryptography. In particular, we study the relationship between the
complexity class MIP$^*$ , the set of languages decidable by multiprover interactive ...
more >>>
We prove that the Or function on $n$ bits can be point-wise approximated with error $\eps$ by a polynomial of degree $O(k)$ and weight $2^{O(n \log (1/\eps)/k)}$, for any $k \geq \sqrt{n \log 1/\eps}$. This result is tight for all $k$. Previous results were either not tight or had $\eps ... more >>>
PreviousNext