Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR19-075 | 25th May 2019
Lijie Chen, Dylan McKay, Cody Murray, Ryan Williams

Relations and Equivalences Between Circuit Lower Bounds and Karp-Lipton Theorems

Relations and Equivalences Between Circuit Lower Bounds and Karp-Lipton Theorems

A frontier open problem in circuit complexity is to prove P^NP is not in SIZE[n^k] for all k; this is a necessary intermediate step towards NP is not in P/poly. Previously, for several classes containing P^NP, including NP^NP, ZPP^NP, and ... more >>>


TR19-074 | 22nd May 2019
Arka Rai Choudhuri, Pavel Hubá?ek, Chethan Kamath, Krzysztof Pietrzak, Alon Rosen, Guy Rothblum

Finding a Nash Equilibrium Is No Easier Than Breaking Fiat-Shamir

The Fiat-Shamir heuristic transforms a public-coin interactive proof into a non-interactive argument, by replacing the verifier with a cryptographic hash function that is applied to the protocol’s transcript. Constructing hash functions for which this transformation is sound is a central and long-standing open question in cryptography.

We show that ... more >>>


TR19-073 | 17th May 2019
Igor Carboni Oliveira, Rahul Santhanam, Srikanth Srinivasan

Parity helps to compute Majority

We study the complexity of computing symmetric and threshold functions by constant-depth circuits with Parity gates, also known as AC$^0[\oplus]$ circuits. Razborov (1987) and Smolensky (1987, 1993) showed that Majority requires depth-$d$ AC$^0[\oplus]$ circuits of size $2^{\Omega(n^{1/2(d-1)})}$. By using a divide-and-conquer approach, it is easy to show that Majority can ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint