Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR19-069 | 6th May 2019
Nicola Galesi, Dmitry Itsykson, Artur Riazanov, Anastasia Sofronova

Bounded-depth Frege complexity of Tseitin formulas for all graphs

Revisions: 1

We prove that there is a constant $K$ such that \emph{Tseitin} formulas for an undirected graph $G$ requires proofs of
size $2^{\mathrm{tw}(G)^{\Omega(1/d)}}$ in depth-$d$ Frege systems for $d<\frac{K \log n}{\log \log n}$, where $\tw(G)$ is the treewidth of $G$. This extends H{\aa}stad recent lower bound for the grid graph ... more >>>


TR19-068 | 27th April 2019
Shuo Pang

LARGE CLIQUE IS HARD ON AVERAGE FOR RESOLUTION

Revisions: 1

We prove resolution lower bounds for $k$-Clique on the Erdos-Renyi random graph $G(n,n^{-{2\xi}\over{k-1}})$ (where $\xi>1$ is constant). First we show for $k=n^{c_0}$, $c_0\in(0,1/3)$, an $\exp({\Omega(n^{(1-\epsilon)c_0})})$ average lower bound on resolution where $\epsilon$ is arbitrary constant.

We then propose the model of $a$-irregular resolution. Extended from regular resolution, this model ... more >>>


TR19-067 | 6th May 2019
Hamed Hatami, Kaave Hosseini, Shachar Lovett

Sign rank vs Discrepancy

Revisions: 1

Sign-rank and discrepancy are two central notions in communication complexity. The seminal work of Babai, Frankl, and Simon from 1986 initiated an active line of research that investigates the gap between these two notions.
In this article, we establish the strongest possible separation by constructing a Boolean matrix whose sign-rank ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint