Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR24-157 | 17th October 2024
Yupan Liu, Qisheng Wang

On estimating the trace of quantum state powers

Revisions: 1

We investigate the computational complexity of estimating the trace of quantum state powers $\text{tr}(\rho^q)$ for an $n$-qubit mixed quantum state $\rho$, given its state-preparation circuit of size $\text{poly}(n)$. This quantity is closely related to and often interchangeable with the Tsallis entropy $\text{S}_q(\rho) = \frac{1-\text{tr}(\rho^q)}{q-1}$, where $q = 1$ corresponds to ... more >>>


TR24-156 | 7th October 2024
Bruno Pasqualotto Cavalar, Eli Goldin, Matthew Gray, Peter Hall

A Meta-Complexity Characterization of Quantum Cryptography

We prove the first meta-complexity characterization of a quantum cryptographic primitive. We show that one-way puzzles exist if and only if there is some quantum samplable distribution of binary strings over which it is hard to approximate Kolmogorov complexity. Therefore, we characterize one-way puzzles by the average-case hardness of a ... more >>>


TR24-155 | 11th October 2024
Shuichi Hirahara, Zhenjian Lu, Mikito Nanashima

Optimal Coding for Randomized Kolmogorov Complexity and Its Applications

The coding theorem for Kolmogorov complexity states that any string sampled from a computable distribution has a description length close to its information content. A coding theorem for resource-bounded Kolmogorov complexity is the key to obtaining fundamental results in average-case complexity, yet whether any samplable distribution admits a coding theorem ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint