Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR24-156 | 7th October 2024
Bruno Pasqualotto Cavalar, Eli Goldin, Matthew Gray, Peter Hall

A Meta-Complexity Characterization of Quantum Cryptography

We prove the first meta-complexity characterization of a quantum cryptographic primitive. We show that one-way puzzles exist if and only if there is some quantum samplable distribution of binary strings over which it is hard to approximate Kolmogorov complexity. Therefore, we characterize one-way puzzles by the average-case hardness of a ... more >>>


TR24-155 | 11th October 2024
Shuichi Hirahara, Zhenjian Lu, Mikito Nanashima

Optimal Coding for Randomized Kolmogorov Complexity and Its Applications

The coding theorem for Kolmogorov complexity states that any string sampled from a computable distribution has a description length close to its information content. A coding theorem for resource-bounded Kolmogorov complexity is the key to obtaining fundamental results in average-case complexity, yet whether any samplable distribution admits a coding theorem ... more >>>


TR24-154 | 10th October 2024
Jesse Goodman, Xin Li, David Zuckerman

Improved Condensers for Chor-Goldreich Sources

One of the earliest models of weak randomness is the Chor-Goldreich (CG) source. A $(t,n,k)$-CG source is a sequence of random variables $\mathbf{X}=(\mathbf{X}_1,\dots,\mathbf{X}_t) \sim (\{0,1\}^n)^t$, where each $\mathbf{X}_i$ has min-entropy $k$ conditioned on any fixing of $\mathbf{X}_1,\dots,\mathbf{X}_{i-1}$. Chor and Goldreich proved that there is no deterministic way to extract randomness ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint