
PreviousNext
Given a set of $n$ points in $\mathbb R^d$, the (monochromatic) Closest Pair problem asks to find a pair of distinct points in the set that are closest in the $\ell_p$-metric. Closest Pair is a fundamental problem in Computational Geometry and understanding its fine-grained complexity in the Euclidean metric when ... more >>>
We prove that for every distribution $D$ on $n$ bits with Shannon
entropy $\ge n-a$ at most $O(2^{d}a\log^{d+1}g)/\gamma{}^{5}$ of
the bits $D_{i}$ can be predicted with advantage $\gamma$ by an
AC$^{0}$ circuit of size $g$ and depth $d$ that is a function of
all the bits of $D$ except $D_{i}$. ...
more >>>
In the *Conditional Disclosure of Secrets* (CDS) problem (Gertner et al., J. Comput. Syst. Sci., 2000) Alice and Bob, who hold $n$-bit inputs $x$ and $y$ respectively, wish to release a common secret $z$ to Carol (who knows both $x$ and $y$) if and only if the input $(x,y)$ satisfies ... more >>>
PreviousNext