Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR24-149 | 24th September 2024
Noor Athamnah, Ron D. Rothblum, Eden Florentz – Konopnicki

Rate-1 Zero-Knowledge Proofs from One-Way Functions

We show that every NP relation that can be verified by a bounded-depth polynomial-sized circuit, or a bounded-space polynomial-time algorithm, has a computational zero-knowledge proof (with statistical soundness) with communication that is only additively larger than the witness length. Our construction relies only on the minimal assumption that one-way functions ... more >>>


TR24-148 | 5th October 2024
Swastik Kopparty, Mrinal Kumar, Harry Sha

High Rate Multivariate Polynomial Evaluation Codes

Revisions: 1

The classical Reed-Muller codes over a finite field $\mathbb{F}_q$ are based on evaluations of $m$-variate polynomials of degree at most $d$ over a product set $U^m$, for some $d$ less than $|U|$. Because of their good distance properties, as well as the ubiquity and expressive power of polynomials, these codes ... more >>>


TR24-147 | 4th October 2024
Shanthanu Rai

Pseudo-Deterministic Construction of Irreducible Polynomials over Finite Fields

We present a polynomial-time pseudo-deterministic algorithm for constructing irreducible polynomial of degree $d$ over finite field $\mathbb{F}_q$. A pseudo-deterministic algorithm is allowed to use randomness, but with high probability it must output a canonical irreducible polynomial. Our construction runs in time $\tilde{O}(d^4 \log^4{q})$.

Our construction extends Shoup's deterministic algorithm ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint