How can we trust the correctness of a learned model on a particular input of interest? Model accuracy is typically measured $on\ average$ over a distribution of inputs, giving no guarantee for any fixed input. This paper proposes a theoretically-founded solution to this problem: to train $Self$-$Proving\ models$ that prove ... more >>>
We present the first efficient averaging sampler that achieves asymptotically optimal randomness complexity and near-optimal sample complexity for natural parameter choices. Specifically, for any constant $\alpha > 0$, for $\delta > 2^{-\mathrm{poly}(1 / \varepsilon)}$, it uses $m + O(\log (1 / \delta))$ random bits to output $t = O(\log(1 ... more >>>
What are the minimal cryptographic assumptions that suffice for constructing efficient argument systems, and for which tasks? Recently, Amit and Rothblum [STOC 2023] showed that one-way functions suffice for constructing constant-round arguments for bounded-depth computations. In this work we ask: what other tasks have efficient argument systems based only on ... more >>>