For $S\subseteq \mathbb{F}^n$, consider the linear space of restrictions of degree-$d$ polynomials to $S$. The Hilbert function of $S$, denoted $\mathrm{h}_S(d,\mathbb{F})$, is the dimension of this space. We obtain a tight lower bound on the smallest value of the Hilbert function of subsets $S$ of arbitrary finite grids in $\mathbb{F}^n$ ... more >>>
The Gilbert--Varshamov (GV) bound is a classical existential result in coding theory. It implies that a random linear binary code of rate $\varepsilon^2$ has relative distance at least $\frac{1}{2} - O(\varepsilon)$ with high probability. However, it is a major challenge to construct explicit codes with similar parameters.
One hope to ... more >>>
Error reduction procedures play a crucial role in constructing weighted PRGs [PV'21, CDRST'21], which are central to many recent advances in space-bounded derandomization. The fundamental method driving error reduction procedures is the Richardson iteration, which is adapted from the literature on fast Laplacian solvers. In the context of space-bounded derandomization, ... more >>>