
PreviousNext
Some computational problems seem to have a certain "structure" that is manifested in non-trivial algorithmic properties, while others are more "unstructured" in the sense that they are either "very easy" or "very hard". I survey some of the known results and open questions about this classification and its connections to ... more >>>
In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree $n$ in $n^2$ variables such that any homogeneous depth 4 arithmetic circuit computing it must have size $n^{\Omega(\log \log n)}$.
Our results extend ... more >>>
We introduce {\em online interactive proofs} (OIP), which are a hierarchy of communication complexity models that involve both randomness and nondeterminism (thus, they belong to the Arthur--Merlin family), but are {\em online} in the sense that the basic communication flows from Alice to Bob alone. The complexity classes defined by ... more >>>
PreviousNext