We study the interactive channel capacity of an $\epsilon$-noisy channel. The interactive channel capacity $C(\epsilon)$ is defined as the minimal ratio between the communication complexity of a problem (over a non-noisy channel), and the communication complexity of the same problem over the binary symmetric channel with noise rate $\epsilon$, where ... more >>>
We define DLOGTIME proof systems, DLTPS, which generalize NC0 proof systems.
It is known that functions such as Exact-k and Majority do not have NC0 proof systems. Here, we give a DLTPS for Exact-k (and therefore for Majority) and also for other natural functions such as Reach and k-Clique. Though ...
more >>>
We prove tight size bounds on monotone switching networks for the NP-complete problem of
$k$-clique, and for an explicit monotone problem by analyzing a pyramid structure of height $h$ for
the P-complete problem of generation. This gives alternative proofs of the separations of m-NC
from m-P and of m-NC$^i$ from ...
more >>>